Abstract

Pancreatic Ductal Adenocarcinoma (PDA) has a mortality rate that nearly matches its incidence rate. Transforming Growth Factor Beta (TGF-β) is a cytokine with a dual role in tumor development switching from a tumor suppressor to a tumor promoter. There is limited knowledge of how TGF-β function switches during tumorigenesis. Mucin 1 (MUC1) is an aberrantly glycosylated, membrane-bound, glycoprotein that is overexpressed in >80% of PDA cases and is associated with poor prognosis. In PDA, MUC1 promotes tumor progression and metastasis via signaling through its cytoplasmic tail (MUC1-CT) and interacting with other oncogenic signaling molecules. We hypothesize that high levels of MUC1 in PDA may be partly responsible for the TGF-β functional switch during oncogenesis. We report that overexpression of MUC1 in BxPC3 human PDA cells (BxPC3.MUC1) enhances the induction of epithelial to mesenchymal transition leading to increased invasiveness in response to exogenous TGF-β1. Simultaneously, these cells resist TGF-β induced apoptosis by downregulating levels of cleaved caspases. We show that mutating the tyrosines in MUC1-CT to phenylalanine reverses the TGF-β induced invasiveness. This suggests that the tyrosine residues in MUC1-CT are required for TGF-β induced invasion. Some of these tyrosines are phosphorylated by the tyrosine kinase c-Src. Thus, treatment of BxPC3.MUC1 cells with a c-Src inhibitor (PP2) significantly reduces TGF-β induced invasiveness. Similar observations were confirmed in the Chinese hamster ovarian (CHO) cell line. Data strongly suggests that MUC1 may regulate TGF-β function in PDA cells and thus have potential clinical relevance in the use of TGF-β inhibitors in clinical trials.

Highlights

  • Pancreatic Ductal Adenocarcinoma (PDA) is the fourth leading cause of cancer related deaths in the United States with a median survival rate of less than six months and a 5–year survival rate of a dismal 7% [1, 2]

  • We report that overexpression of Mucin 1 (MUC1) in BxPC3 human PDA cells (BxPC3.MUC1) enhances the induction of epithelial to mesenchymal transition leading to increased invasiveness in response to exogenous TGF-β1

  • We selected Chinese hamster ovarian cell line (CHO) that is null for human MUC1 and a human PDA cell line BxPC3 that express low levels of endogenous human MUC1 and has SMAD4 independent TGF-β signaling, CHO cells have intact canonical TGF-β signaling pathway and were selected as a control cell line to investigate the effects of MUC1 on TGF-β signaling and phenotypic outcomes

Read more

Summary

INTRODUCTION

Pancreatic Ductal Adenocarcinoma (PDA) is the fourth leading cause of cancer related deaths in the United States with a median survival rate of less than six months and a 5–year survival rate of a dismal 7% [1, 2]. Studies have linked overexpression of MUC1 in tumors with enhanced EMT leading to increased invasiveness, metastasis, and drug resistance [22, 28, 29]. MUC1 induces increased production of prostaglandin (Cox-2) and growth factors (PDGF and VEGF), which leads to enhanced invasiveness of cells mainly through induction of EMT related genes [24, 27, 30, 31]. We show that overexpression of MUC1 in human SMAD4 deleted PDA cell line BxPC3, plays an important role in the switch of TGF-β from a tumor suppressor to a tumor promoter, via a SMAD4 independent mechanism. This study is the first to show that overexpression of MUC1 directly reduces TGF-β induced apoptosis and increases invasive potential in BxPC3 and CHO cells via signaling through the tyrosines in MUC1 CT

RESULTS
DISCUSSION
EXPERIMENTAL PROCEDURES
CONFLICTS OF INTEREST
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call