Abstract

Overexpression of androgen receptor (AR) is the primary cause of castration-resistant prostate cancer, although mechanisms upregulating AR transcription in this context are not well understood. Our RNA-seq studies revealed that SMAD3 knockdown decreased levels of AR and AR target genes, whereas SMAD4 or SMAD2 knockdown had little or no effect. ChIP-seq analysis showed that SMAD3 knockdown decreased global binding of AR to chromatin. Mechanistically, we show that SMAD3 binds to intron 3 of the AR gene to promote AR expression. Targeting these binding sites by CRISPRi reduced transcript levels of AR and AR targets. In addition, ∼50% of AR and SMAD3 ChIP-seq peaks overlapped, and SMAD3 may also cooperate with or co-activate AR for AR target expression. Functionally, AR re-expression in SMAD3-knockdown cells partially rescued AR target expression and cell growth defects. The SMAD3 peak in AR intron 3 overlapped with H3K27ac ChIP-seq and ATAC-seq peaks in datasets of prostate cancer. AR and SMAD3 mRNAs were upregulated in datasets of metastatic prostate cancer and CRPC compared with primary prostate cancer. A SMAD3 PROTAC inhibitor reduced levels of AR, AR-V7 and AR targets in prostate cancer cells. This study suggests that SMAD3 could be targeted to inhibit AR in prostate cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.