Abstract

Mutations in the bone morphogenetic protein receptor type II (BMPrII) gene have been implicated in the development of familial pulmonary artery hypertension (PAH). The function of BMP signal transduction within the pulmonary vasculature and the role BMPrII mutations have in the development of PAH are incompletely understood. We used the monocrotaline (MCT) model of PAH to examine alterations in Smad signal transduction pathways in vivo. Lungs harvested from Sprague-Dawley rats treated with a single 60-mg/kg intraperitoneal (IP) injection of MCT were compared to saline-treated controls 2 weeks following treatment. Smad 4 was localized by immunohistochemistry to endothelial nuclei of the intra-acinar vessels undergoing remodeling. Smad 4, common to both BMP and transforming growth factor beta (TGFbeta) signaling, and BMP-specific Smad 1 were significantly decreased in western blot from whole lungs of treated animals, while no change was found for TGFbeta-specific Smad 2. MCT-treated rats also had increased expression of phosphorylated Smad 1 (P-Smad 1) but not phosphorylated Smad 2 (P-Smad 2). There was a decrease in the expression of the full BMPrII protein but not its short form variant in MCT-treated rat lungs. The type I receptor Alk1 had increased expression. Collectively, our data indicate that vascular remodeling in the MCT model is associated with alterations in BMP receptors and persistent endothelial Smad 1 signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.