Abstract

BackgroundSmad nuclear interacting protein 1 (SNIP1) plays a critical role in cell proliferation, transformation of embryonic fibroblasts, and immune regulation. However, the role of SNIP1 in cardiac hypertrophy remains unclear.Methods and ResultsHere we examined the role of SNIP1 in pressure overload–induced cardiac hypertrophy and its mechanisms. Our results demonstrated that SNIP1 expression was downregulated in human dilated cardiomyopathic hearts, aortic banding‐induced mice hearts, and angiotensin II–treated cardiomyocytes. Accordingly, SNIP1 deficiency significantly exacerbated aortic banding–induced cardiac hypertrophy, fibrosis, and contractile dysfunction, whereas cardiac‐specific overexpression of SNIP1 markedly recovered pressure overload–induced cardiac hypertrophy and fibrosis. Besides that, SNIP1 protected neonatal rat cardiomyocytes against angiotensin II–induced hypertrophy in vitro. Moreover, we identified that SNIP1 suppressed nuclear factor‐κB signaling during pathological cardiac hypertrophy, and inhibition of nuclear factor‐κB signaling by a cardiac‐specific conditional inhibitor of κBS 32A/S36A transgene blocked these adverse effects of SNIP1 deficiency on hearts.ConclusionsTogether, our findings demonstrated that SNIP1 had protective effects in pressure overload–induced pathological cardiac hypertrophy via inhibition of nuclear factor‐κB signaling. Thus, SNIP1 may be a novel approach for the treatment of heart failure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.