Abstract

Introduction Bone morphogenetic protein-2 (BMP-2) is a member of the transforming growth factor-β (TGF-β) superfamily, which has a broad range of activities that affect many different cell types. Previous research has suggested that BMP-2 induces the differentiation of human dental pulp cells (DPCs) into odontoblast-like cells. However, the mechanism by which BMP-2 induces odontoblastic differentiation has not yet been established. In the present study, we examined the involvement of the BMP/Smad pathway in mediating odontoblastic differentiation in DPCs. Methods Levels of phosphorylated and unphosphorylated Smad1/5 were quantified by Western blot analysis in response to BMP-2 and the BMP signaling inhibitor noggin. Some nuclear translocation of Smad1/5 was also observed by immunofluorescence staining in isolated DPCs treated with BMP-2. The effects of noggin on the BMP-2–induced odontoblastic differentiation of DPCs were determined by alkaline phosphatase activity assay, and the expression of odontoblastic markers was evaluated by reverse transcription polymerase chain reaction analysis and Western blotting. Results We found that BMP-2 induced the phosphorylation and nuclear translocation of Smad 1/5. In addition, noggin significantly inhibited alkaline phosphatase activity and odontoblastic differentiation and reduced the formation of mineralized nodules in BMP-2–treated DPCs. Conclusions These findings suggest that Smad 1/5 is involved in BMP-2–induced odontoblastic differentiation in DPCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.