Abstract

BiFeO3 is one of the star materials in the field of ferroelectric photovoltaic for its relatively narrow bandgap (2.2–2.7 eV) and better visible light absorption. However, a high temperature over 600 °C is indispensable in the usual BiFeO3 growth process, which may lead to impure phase, interdiffusion of components near the interface, oxygen vacancy and ferrous iron ions, which will result in large leakage current and greatly aggravate the ferroelectricity and photoelectric response. Here we prepared Sm, Nd doped epitaxial BiFeO3 film via a rapid microwave assisted hydrothermal process at low temperature. The Bi0.9Sm0.5Nd0.5FeO3 film exhibits narrow bandgap (1.35 eV) and photo response to red light, the on–off current ratio reaches over 105. The decrease in band gap and +2/+3 variable element doping are responsible for the excellent photo response. The excellent photo response performances are much better than any previously reported BiFeO3 films, which has great potential for applications in photodetection, ferroelectric photovoltaic and optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.