Abstract

BackgroundDespite the benefits of existing vaccines, Streptococcus pneumoniae is still responsible for the greatest proportion of respiratory tract infections around the globe, thereby substantially contributing to morbidity and mortality in humans. B‐1 cells are key players of bacterial clearance during pneumococcal infection and even provide long‐lasting immunity towards S. pneumoniae. Previous reports strongly suggest an essential role of the immunoinhibitory adapter Src homology domain 3 lymphocyte protein 2 (SLy2) for B‐1 cell‐mediated antibody production. The objective of this study is to evaluate S. pneumoniae‐directed B cell responses in the context of SLy2 deficiency.MethodsB‐1 cell populations were analyzed via flow cytometry before and after pneumococcal immunization of SLy2‐deficient and wild‐type control mice. Global and vaccine‐specific immunoglobulin M (IgM) and IgG antibody titers were assessed by enzyme‐linked immunosorbent assay. To investigate survival rates during acute pneumococcal lung infection, mice were intranasally challenged with S. pneumoniae (serotype 3). Complementary isolated splenic B cells were stimulated in vitro and their proliferative response was assessed by fluorescent staining. In vitro antibody secretion was quantified by LEGENDplex.ResultsWe demonstrate increased frequencies of B‐1 cells and elevated titers of preantigenic IgM in SLy2‐deficient mice. In addition, these mice produce significantly more amounts of IgM and IgG2 upon pneumococcal vaccination. Knocking out SLy2 did not induce survival advantages in our murine model of acute pneumonia, indicating the presence of compensatory mechanisms.ConclusionOur results reveal reinforced specific antibody responses towards pneumococcal polysaccharides and enhanced IgG2 secretion as a consequence of SLy2 deficiency, which could be relevant to the development of more efficient vaccines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.