Abstract

Plant resistance (R) gene-mediated defense responses against biotic stresses include vast transcriptional reprogramming. In several plant-pathogen systems, members of the WRKY family of transcription factors have been demonstrated to act as both positive and negative regulators of plant defense transcriptional networks. To identify the possible roles of tomato (Solanum lycopersicum) WRKY transcription factors in defense mediated by the R gene Mi-1 against potato aphid, Macrosiphum euphorbiae, and root-knot nematode (RKN), Meloidogyne javanica, we used tobacco rattle virus (TRV)-based virus-induced gene silencing and transcriptionally suppressed SlWRKY70, a tomato ortholog of the Arabidopsis thaliana WRKY70 gene. Silencing SlWRKY70 attenuated Mi-1-mediated resistance against both potato aphid and RKN showing that SlWRKY70 is required for Mi-1 function. Furthermore, we found SlWRKY70 transcripts to be inducible in response to aphid infestation and RKN inoculation. Mi-1-mediated recognition of these pests modulates this transcriptional response. As previously described for AtWRKY70, we found SlWRKY70 transcript levels to be up-regulated by salicylic acid and suppressed by methyl jasmonate. This indicates that some aspects of WRKY70 regulation are conserved among distantly related eudicots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.