Abstract

A201 alloy is the strongest cast aluminum alloy, but it is considered one of the most difficult aluminum alloys to cast due to its susceptibility to hot tearing during solidification. Semi-solid casting, which characterizes fine near-globular or non-dendritic grains and relatively narrow solidification range, is potential to reduce hot cracking tendency of alloys. In this present work, semi-solid slurries of A201 alloy were prepared using Swirled Enthalpy Equilibrium Device (SEED) technique and then injected into a self-designed high pressure hot tearing mold. The microstructures of A201 semi-solid slurries with different pouring temperatures were examined. Effects of different casting pressures on the hot tearing sensitivity of A201 have been investigated. This study finds that SEED is capable of producing satisfying A201 semi-solid slurries. Lower pouring temperatures produce A201 semi-solid slurries with finer and rounder grains as well as more uniform microstructure distribution. Increasing the intensification pressure significantly decreases the hot treating tendency of A201 alloy. When the pressure reaches to 90 MPa and the mold temperature of about 250 °C, the hot tearing susceptibility (HTS) index value is nearly zero, which means almost no surface cracks are found in the semi-solid A201 die casting parts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call