Abstract

The use of molecular gas addition as a volatilization aid in slurry nebulization inductively coupled plasma atomic emission spectrometry (ICP-AES) has been investigated using a combination of rigorous optimization strategies and spectrochemical measurements. The addition of hydrogen resulted in an improvement in accuracy, which corresponded to the elimination of atomization interferences observed during the analysis of a highly refractory material by slurry nebulization ICP-AES. This ability to decompose refractory particles correlated with higher rotational plasma temperatures. This increase in temperature from 2200 to 3900 K was attributed to increased energy transfer from the toroidal to the annular region of the ICP as a consequence of the higher thermal conductivity of hydrogen compared with argon. This process appears to be self-limiting and a mechanism is proposed to account for this behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.