Abstract

AbstractTwo first-step copper damascene slurries and one commercial second-step slurry are characterized in terms of their intrinsic properties and CMP performance. A prototype first-step slurry with high static etch rate (∼150 nm/min) yielded higher dishing in the copper lines (∼200 nm in 100 μm lines) compared to a commercial first-step slurry with negligible static etch rate. In both the cases, dishing in copper lines is observed to be a strong function of line width and radial position on the wafer. High static etch rate of the prototype slurry is believed to be responsible for the high dishing. Non-selective second-step polishing removes the liner layer while maintaining planarity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.