Abstract

Boron-doped diamond (BDD) has tremendous potential for use as an electrode material with outstanding characteristics. The substrate material of BDD can affect the electrochemical properties of BDD electrodes due to the different junction structures of BDD and the substrate materials. However, the BDD/substrate interfacial properties have not been clarified. In this study, the electrochemical behavior of BDD electrodes with different boron-doping levels (0.1% and 1.0% B/C ratios) synthesized on Si, W, Nb, and Mo substrates was investigated. Potential band diagrams of the BDD/substrate interface were proposed to explain different junction structures and electrochemical behaviors. Oxygen-terminated BDD with moderate boron-doping levels exhibited sluggish electron transfer induced by the large capacitance generated at the BDD/Si interface. These findings provide a fundamental understanding of diamond electrochemistry and insight into the selection of suitable substrate materials for practical applications of BDD electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.