Abstract

AbstractWe investigate the differences in subglacial hydraulic properties between Bakaninbreen, a surge-type glacier in southern Svalbard, and midre Lovénbreen, a non-surge-type glacier in northwest Svalbard, using slug tests. At Bakaninbreen, underlain by fine-grained glacial till and marine sediments, slug-test responses were underdamped and are analyzed with the Van der Kamp method using a fully penetrating screen. At midre Lovénbreen, underlain by metres-thick permafrost consisting of coarse clasts, ice and water, slug-test responses were overdamped and are analyzed with the Butler–Garnett method using a partially penetrating screen. We calculate typical hydraulic conductivities of 8.2 ± 7.8 x 10–3 ms–1 for Bakaninbreen, and 1.9 ± 0.5 × 10–5 m s–1 for midre Lovénbreen, after correction for a high-conductivity skin. At Bakaninbreen, late surge-induced subglacial sediment dilation probably caused marked hydraulic conductivity enhancement, which could be widespread during times of peak ice flow. We argue that the flow pathways in the permafrost beneath midre Lovénbreen are present, though limited in terms of their discharge capacity, which in combination with drilling-based observations and independent evidence suggests that midre Lovénbreen is not capable of surging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.