Abstract

Arterial calcification is considered a major cause of death and disabilities worldwide because the associated vascular remodeling leads to myocardial infarction, stroke, aneurysm, and pulmonary embolism. This process occurs via poorly understood mechanisms involving a variety of cell types, intracellular mediators, and extracellular cues within the vascular wall. An inverse correlation between endothelial primary cilia and vascular calcified areas has been described although the signaling mechanisms involved remain unknown. We aim to investigate the signaling pathways regulated by the primary cilium that modulate the contribution of endothelial cells to vascular calcification. We found that human and murine endothelial cells lacking primary cilia are prone to undergo mineralization in response to bone morphogenetic proteins stimulation in vitro. Using the Tg737(orpk/orpk) cillium-defective mouse model, we show that nonciliated aortic endothelial cells acquire the ability to transdifferentiate into mineralizing osteogenic cells, in a bone morphogenetic protein-dependent manner. We identify β-CATENIN-induced SLUG as a key transcription factor controlling this process. Moreover, we show that the endothelial expression of SLUG is restricted to atheroprone areas in the aorta of LDLR(-/-) mice. Finally, we demonstrate that SLUG and phospho-homolog of the Drosophila protein, mothers against decapentaplegic (MAD) and the Caenorhabditis elegans protein SMA (from gene sma for small body size)-1/5/8 expression increases in endothelial cells constituting the vasa vasorum in the human aorta during the progression toward atherosclerosis. We demonstrated that the lack of primary cilia sensitizes the endothelium to undergo bone morphogenetic protein-dependent-osteogenic differentiation. These data emphasize the role of the endothelial cells on the vascular calcification and uncovers SLUG as a key target in atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.