Abstract

Sludge yield and suspended solid are important factors concerned in the anaerobic treatment of municipal wastewater. In this study, a large pilot-scale anaerobic membrane bioreactor (AnMBR) was constructed for effectively treating real municipal wastewater at an ambient temperature of 25 °C. The sludge yield and the degradation of influent suspended solids were evaluated during the long-term operation of the AnMBR. This reactor with 5.0 m3 effective volume is the largest one-stage submerged AnMBR that has ever been used to treat municipal wastewater. During the long-term operation of 217 days, this AnMBR obtained excellent COD and BOD5 removal efficiency over 90%. Stable biogas production was also successfully obtained from treating municipal wastewater. The sludge yield of the AnMBR was approximately 0.19–0.26 g MLSS g−1 COD removed for the treatment of real municipal wastewater. The shortest SRT of the AnMBR was calculated as 29 days for an HRT of 6 h at an empirical MLSS of 10 g L−1. While the influent suspended solid (SS) contained in the municipal wastewater was completely removed by the AnMBR, only 57%–66% of the influent SS was degraded. The rest of influent SS was directly converted to MLSS instead of being degraded. The AnMBR maintained a stable membrane filtration using a hollow-fiber membrane with a total area of 72 m2, realizing a flux of 2.75–17.83 LMH, and the mean transmembrane pressure (TMP) was 0.9–23.5 kPa. An online chemical backwash cleaning system helped to lower the TMP timely using sodium hypochlorite and citric acid when the TMP increased rapidly and reached the rated limit of membrane. This is the first report on demonstrating the successful operation and detailed performance of a large pilot-scale AnMBR applied to the treatment of real municipal wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.