Abstract
Methanogenic sludge digestion plays a pivotal role in attenuating and hygienizing the massively-produced waste activated sludge (WAS), which is predominantly composed of microbial cells and extracellular polymeric substances (EPS). The efficient sludge digestion requires a variety of functionally active microorganisms working together closely to convert sludge organic matter into biogas. Nonetheless, the digestion efficiency (or digestibility quantified as carbon removal efficiency) of major sludge constituents (i.e., microbial cells and EPS) and associated functionally active microorganisms in sludge digesters remain elusive. In this study, we identified the digestibility of sludge microbial cells and the associated functionally active microorganisms by using Escherichia coli (E. coli)-fed digestion and microbial source tracking. The average carbon removals in four digesters fed with fresh WAS (WAS-AD), thermal pretreated WAS (Thermal-WAS-AD), E. coli cells (E.coli-AD) and thermal pretreated E. coli cells (Thermal-E.coli-AD) were 30.6 ± 3.4%, 45.8 ± 2.9%, 69.0 ± 3.4% and 68.9 ± 4.6%, respectively. Compared to WAS-AD and Thermal-WAS-AD, the significantly higher carbon removals in E. coli-AD and Thermal-E. coli-AD suggested the remarkably higher digestibility of microbial cells than EPS, and releasing organic matter from EPS might be a rate-limiting step in sludge digestion. Functionally active microorganisms for microbial cell digestion predominantly included fermenters (e.g., Petrimonas and Lentimicrobium), syntrophic acetogens (e.g., Synergistaceae) and methanogens (e.g., Methanosaeta and Methanosarcina). Microbial source tracking estimation showed that the microbial cell-digesting populations accounted for 35.6 ± 9.1% and 70.3 ± 10.1% of total microbial communities in the WAS-AD and Thermal-WAS-AD, respectively. Accordingly, the functionally active microorganisms for digestion of both microbial cells and EPS accounted for 64.5 ± 12.1% and 97.3 ± 2.0% of total digestion sludge microbiome in WAS-AD and Thermal-WAS-AD, respectively. By contrast, feeding WAS-derived microorganisms accounted for 23.2 ± 4.4% and 2.3 ± 1.2% of total microbial communities in the WAS-AD and Thermal-WAS-AD, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.