Abstract

The first line of plant defense occurs when a plant pattern recognition receptor (PRR) recognizes microbe-associated molecular patterns. Plant PRRs are either receptor-like kinases (RLKs), which have an extracellular domain for ligand binding, a single-pass transmembrane domain, and an intracellular kinase domain for activating downstream signaling, or receptor-like proteins (RLPs), which share the same overall structure but lack an intracellular kinase domain. The tomato (Solanum lycopersicum) LeEIX2 is an RLP that binds ethylene-inducing xylanase (EIX), a fungal elicitor. To identify LeEIX2 receptor interactors, we conducted a yeast two-hybrid screen and found a tomato protein that we termed SlRLK-like. The interaction of LeEIX2 with SlRLK-like was verified using co-immunoprecipitation and bimolecular fluorescence complementation assays. The defense responses induced by EIX were markedly reduced when SlRLK-like was overexpressed in Nicotiana benthamiana or Nicotiana tabacum, and knockout of SlRLK-like using the CRISPR/Cas9 system increased EIX-induced ethylene production and 1-aminocyclopropane-1-carboxylate synthase (SlACS2) gene expression in tomato. Co-expression of SlRLK-like with LeEIX2 led to a reduction in its abundance, apparently through an endoplasmic reticulum-associated degradation process. Notably, truncation of SlRLK-like protein revealed that the malectin-like domain is sufficient and essential for its function. Moreover, SlRLK-like associated with the RLK FLS2, resulting in its degradation and concomitantly a reduction of the flagellin 22 (flg22)-induced burst of reactive oxygen species. In addition, SlRLK-like co-expression with other RLPs, Ve1 and AtRLP23, also led to a reduction in their abundance. Our findings suggest that SlRLK-like leads to a decreased stability of various PRRs, leading to a reduction in their abundance and resulting in attenuation of defense responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.