Abstract

The slow-motion theory of nuclear spin relaxation in paramagnetic low-symmetry complexes is generalized to comprise arbitrary values of S. We describe the effects of rhombic symmetry in the static zero-field splitting (ZFS) and allow the principal axis system of the static ZFS tensor to deviate from the molecule-fixed frame of the nuclear-electron dipole-dipole tensor. We show nuclear magnetic relaxation dispersion (NMRD) profiles for different illustrative cases, ranging from within the Redfield limit into the slow-motion regime with respect to the electron spin dynamics. We focus on S = 3/2 and compare the effects of symmetry-breaking properties on the paramagnetic relaxation enhancement (PRE) in this case with that of S = 1, which we have treated in a previous paper. We also discuss cases of S = 2, 5/2, 3, and 7/2. One of the main objectives of this investigation, together with the previous papers, is to provide a set of standard calculations using the general slow-motion theory, against which simplified models may be tested. Copyright 2000 Academic Press.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call