Abstract
We focus on the spreading properties of solutions of monostable reaction–diffusion equations. Initial data are assumed to have heavy tails, which tends to accelerate the invasion phenomenon. On the other hand, the nonlinearity involves a weak Allee effect, which tends to slow down the process. We study the balance between the two effects. For algebraic tails, we prove the exact separation between ‘no acceleration’ and ’acceleration’. This implies in particular that, for tails exponentially unbounded but lighter than algebraic, acceleration never occurs in the presence of an Allee effect. This is in sharp contrast with the KPP situation []. When algebraic tails lead to acceleration despite the Allee effect, we also give an accurate estimate of the position of the level sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.