Abstract
Irradiation-assisted stress corrosion cracking is of concern for the safe and economic operation of light water reactors. In this study, cracking susceptibility of austenitic stainless steels was investigated by using slow strain rate tensile (SSRT) tests in a simulated pressurized water reactor (PWR) environment. The specimens were irradiated to 5, 10, and 48 dpa in the BOR60 reactor at 320°C. The SSRT results showed that yield strength was increased significantly in irradiated specimens while ductility and strain hardening capability were decreased. Irradiation hardening was found to be saturated below 10 dpa. The irradiated yield strength of cold-worked specimens was higher than that of solution-annealed specimens. Fractographic examinations were also performed on the tested specimens, and the dominant fracture morphology was ductile dimples. Intergranular cracking was rarely seen on the fracture surface. Transgranular cleavage cracking, however, was found more frequently on the specimen tested in simulated PWR environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.