Abstract

Ectopic action potentials can arise at regions of axonal demyelination, and are believed to contribute to a range of symptoms in patients with demyelinating conditions such as multiple sclerosis. The mechanism(s) by which the ectopic impulses are generated are uncertain. We have previously shown that such ectopic activity can result from inward potassium currents. Paradoxically, the potassium channel blocking agent 4-aminopyridine (4AP) can sometimes cause ectopic activity in demyelinating lesions. To study this phenomenon we have made intra-axonal recordings of ectopic activity in demyelinated axons, both in the presence and absence of 5 mM 4AP. 4AP promoted a pattern of firing which was observed, albeit less frequently, in demyelinated axons in the absence of this drug, namely trains of single impulses, or trains of short, high-frequency bursts of impulses. When recorded close to the demyelinated lesion, the impulses were generated by an underlying, almost sinusoidal oscillation of the membrane potential. This oscillation was abolished by the sodium channel blocking agent tetrodotoxin (0.1-1 microM). We conclude that the ectopic spiking induced by 4AP is generated by membrane potential oscillations associated with the site of demyelination. The sodium-dependent current underlying these oscillations, together with the prolonged inward potassium currents which we have previously described, may contribute to the generation of ectopic discharges in a range of disorders of myelinated axons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.