Abstract

The suprachiasmatic nucleus (SCN) is the center of the mammalian circadian system. Environmental photic signals shifts the phase of the circadian rhythm in the SCN except during the dead zone, when the photic signal is gated somewhere on the way from the retina to the neurons in the SCN. Here we examined the phase of the dead zone after an abrupt delay of the LD cycles for several days by observing the mc-Fos induction in the SCN by light pulses. After an abrupt shift of the LD cycles, the dead zone showed a slow phase shift, about two hours per day, which was well corresponded with the slow phase shift of the rest-activity cycles. In our previous study we demonstrated that, after an abrupt shift of the LD cycles, the SCN showed transient endogenous desynchronization between shell and core regions that showed a slow and a rapid shift of the circadian rhythms, respectively. Therefore, the present findings on the phase shift of the dead zone after the LD cycles shift suggest that the phase of the dead zone is under the control of the timing signals from the shell region of the SCN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call