Abstract

We consider slow-roll inflation for a single scalar field with an arbitrary potential and an arbitrary nonminimal coupling to the Gauss-Bonnet term. By introducing a combined hierarchy of Hubble and Gauss-Bonnet flow functions, we analytically derive the power spectra of scalar and tensor perturbations. The standard consistency relation between the tensor-to-scalar ratio and the spectral index of tensor perturbations is broken. We apply this formalism to a specific model with a monomial potential and an inverse monomial Gauss-Bonnet coupling and constrain it by the 7-year Wilkinson Microwave Anisotropy Probe data. The Gauss-Bonnet term with a positive (or negative) coupling may lead to a reduction (or enhancement) of the tensor-to-scalar ratio and hence may revive the quartic potential ruled out by recent cosmological data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.