Abstract
We analyse reflection seismic profiles across the outer accretionary wedge at the convergent New Zealand Hikurangi margin. We identify several, in some case stacked, bottom simulating reflections (BSRs). We interpret these multiple BSRs to record changes in gas hydrate stability. With the aid of gas hydrate systems modelling, we identify two geological drivers that affect gas hydrate stability: (1.) rapid sedimentation in trough basins and (2.) uplift and erosion of thrust ridges. Rapid sedimentation in trough basins buries gas hydrates that formed above the former base of gas hydrate stability (BGHS). Locally, we observe a remnant BSR from this process, likely due to residual gas and possibly gas hydrate. The combined effects of uplift and erosion, in contrast, result in the preservation of a remnant BSR within the gas hydrate stability zone, whilst a new BSR forms locally at the present-day BGHS. However, the limited occurrence of double BSRs in seismic data and the model both suggest that the formation of a deeper BSR is limited by gas supply. Formation of significant gas hydrate at this deeper level only occurs in areas of focused gas migration. This slow formation of gas hydrate also has implications for the response to glacio-eustatic sea-level rise: gas hydrates are more likely to accumulate above the BGHS corresponding to the last glacial maximum, whereas only small amounts formed above the deeper present-day BGHS. Hence, future bottom water warming will, at least initially, not lead to significant methane release from dissociating gas hydrates in deep water.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.