Abstract

Ultraviolet light has been linked with the development of human skin cancers. Such cancers often exhibit mutations in the p53 tumor suppressor gene. Ligation-mediated polymerase chain reaction was used to analyze at nucleotide resolution the repair of cyclobutane pyrimidine dimers along the p53 gene in ultraviolet-irradiated human fibroblasts. Repair rates at individual nucleotides were highly variable and sequence-dependent. Slow repair was seen at seven of eight positions frequently mutated in skin cancer, suggesting that repair efficiency may strongly contribute to the mutation spectrum in a cancer-associated gene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.