Abstract

Acetylene has been found to significantly inhibit biological activity of methanogens and thus might be applicable for reducing the generation and emission of methane from municipal solid waste landfills. However, acetylene is gaseous and so it is considered physically infeasible to directly apply this gas to waste in landfill conditions. In the present study, a novel acetylene release mechanism was tested, using a matrix of acetylene entrapped in high hydrophobic paraffin wax and/or rosin and calcium carbide capsules with a ratio of 1.0 g g(-1) matrix and a diameter of 10 mm to facilitate the gradual release of acetylene. A diffusion mechanism model (Q = &b.gamma; × t (0.5)) for the matrix was derived based on the T. Higuchi equation, and the effective diffusion coefficients (D(e)) were acquired by linear fitting. Additionally, it was found that D(e) remained constant when the rosin content was up to more than 20% g g(-1) matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.