Abstract

Coffee, as one of the most consumed beverages, generates a wide variety of waste materials that can be used as biofuels and bio-products. Conventional pyrolysis can be used in rural areas, improving the circular bioeconomy of these places. In this work, the characterization and slow pyrolysis of specialty coffee residues, coffee silverskin (CSS), and spent coffee (SC) were conducted at temperatures from 300 to 600 °C. Physico-chemical and thermal analysis were carried out. In addition, the quantification of individual compounds as acetic, formic, and levulinic acids, caffeine, and other minor compounds was performed. The results indicate the differences between both waste materials in the obtained pyrolysis fractions. The biochar fraction for SC is lower at all temperatures and the liquid fraction higher, reaching maximum values of 62 wt.% in the liquid at 600 °C compared to 47% in CSS. The higher yield in the liquid fraction of SC corresponds to the higher contents of hemicellulose and extractives and the lower ash content. The calculated calorific value for the pyrolysis solid fractions reaches 21.93 MJ/kg in CSS and 26.45 MJ/kg in SC. Finally, biorefinery options of major components of the liquid fraction were also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call