Abstract

A quasistatic penetration test is designed and implemented to provide insight into the evolution and phenomenology of fabric deformation and failure during penetration. The results are needed to guide development of a physics-based computational model of fabric response to projectile impact. The test involves slowly pushing a rigidly held fragment simulator into and through a single ply fabric specimen. The stroke and load on the penetrator are recorded during the test, and a videocamera and microphone enable the fabric failure phenomena to be time-correlated with the load-stroke history. The three distinct modes of fabric failure observed in these tests—local yarn rupture, remote yarn failure, and yarn pullout—are the same modes observed in impact tests, although the extent to which each mode occurs is different in static and dynamic tests. The conditions under which the different failure modes occur and the effects on the load-stroke curve and the energy absorbed are determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.