Abstract

Flash-induced amperometric signals were measured with a Joliot-type O2 rate electrode in spinach Photosystem II (PS II) membrane fragments exposed to very low concentrations of added hydroxylamine or hydrogen peroxide. In both cases 'anomalous O2 signals' were observed on the first two flashes, and oscillating four-flash patterns were observed on subsequent flashes. The anomalous signals were eliminated in the presence of catalase but not EDTA. The rise times of the O2-release kinetics associated with the anomalous signals were slow (ca. 20 ms with NH2OH and ca. 120 ms with H2O2) compared to the kinetics of O2 release on subsequent flashes and in control membranes (3-6 ms). It is proposed that when the intact PS II O2-evolving complex is perturbed with small concentrations of added reductant, H2O2 can gain access and bind to the complex. Bound H2O2 can then reduce lower S states in some centers leading to anomalous O2 signals on the first two flashes. A model is presented to explain both types of anomalous O2 production. Oxygen observed on the third and subsequent flashes is due to the normal photosynthetic O2-evolution process arising from the S3-state. Anomalous O2 production could be a protective mechanism in PS II centers subjected to stress conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.