Abstract
Since variational symplectic integrators for the guiding center was proposed [1,2], structure-preserving geometric algorithms have become an active research field in plasma physics. We found that the slow manifolds of the classical Pauli particle enable a family of structure-preserving geometric algorithms for guiding center dynamics with long-term stability and accuracy. This discovery overcomes the difficulty associated with the unstable parasitic modes for variational symplectic integrators when applied to the degenerate guiding center Lagrangian. It is a pleasant surprise that Pauli's Hamiltonian for electrons, which predated the Dirac equation and marks the beginning of particle physics, reappears in classical physics as an effective algorithm for solving an important plasma physics problem. This technique is applicable to other degenerate Lagrangians reduced from regular Lagrangians.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.