Abstract
This article deals with invariant manifolds for infinite dimensional random dynamical systems with different time scales. Such a random system is generated by a coupled system of fast-slow stochastic evolutionary equations. Under suitable conditions, it is proved that an exponentially tracking random invariant manifold exists, eliminating the fast motion for this coupled system. It is further shown that if the scaling parameter tends to zero, the invariant manifold tends to a slow manifold which captures long time dynamics. As examples the results are applied to a few systems of coupled parabolic-hyperbolic partial differential equations, coupled parabolic partial differential-ordinary differential equations, and coupled hyperbolic-hyperbolic partial differential equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.