Abstract
This study investigates the possibility of achieving a slow signal field at the level of single photons inside nanofibers by exploiting stimulated Brillouin scattering, which involves a strong pump field and the vibrational modes of the waveguide. The slow signal is significantly amplified for a pump field, with a frequency higher than that of the signal and attenuated for a lower pump frequency. We introduce a configuration for obtaining a propagating slow signal without gain or loss and with a relatively wide bandwidth. This process involves two strong pump fields with frequencies both higher and lower than that of the signal where the effects of signal amplification and attenuation compensate each other. We account for thermal fluctuations due to the scattering of thermal phonons and identify conditions under which thermal contributions to the signal field are negligible. The slowing of light through Brillouin optomechanics may serve as a vital tool for optical quantum information processing and quantum communications within nanophotonic structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.