Abstract
We study numerically the slow-light capability of insulator–metal–insulator (IMI) plasmonic waveguides. Metal-induced losses are included in the calculation of the dispersion relations, and their effect on the slow-light properties of the waveguide is investigated. In addition to reducing the propagation lengths of surface plasmon polaritons, losses are found to limit the achievable slowdown factors and the practical potential of the device. To alleviate the problem, we consider active materials. Using realistic parameters, we find that a spectral region is then formed where a slow-light pulsed signal can achieve infinite propagation lengths or be amplified. The optical buffering capabilities of the IMI waveguide with losses are analyzed, and we conclude that while losses limit the buffering capabilities of the passive device, the use of active materials may combat the problem effectively from an application point of view.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.