Abstract
In this paper, the slow light properties of the polyatomic Photonic Crystal (PhC) which has multiple different air holes in each primitive cell are investigated. A slow light waveguide with “U-type” group index–frequency curve, which results in nearly constant group index over large bandwidth, is achieved using this new photonic crystal geometry based on the square lattice. Also, the radius and position of the innermost rows of small air holes have been modified to investigate the feasibility of controlling the dispersion relation by subtle structural modification. Numerical results demonstrate that decreasing the group velocity effectively and meanwhile maintaining a large Normalized Delay-Bandwidth Product ( NDBP) can be achieved by only modifying the radius of the innermost rows of small air holes. Shifting the innermost rows of small air holes toward the waveguide core is highly beneficial to enlarge the slow light bandwidth, but it contributes nothing to the promotion of NDBP. Our results provide important theoretical basis for the potential application offered by the polyatomic photonic crystal in future optical networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.