Abstract

Abstract What mechanism governs slow flows of granular media? Microscopically, the grains experience enduring frictional contacts in these flows. However, a straightforward translation to a macroscopic frictional rheology, where the shear stresses are proportional to the normal stresses with a rate-independent friction coefficient, fails to capture important aspects of slow granular flows. There is now overwhelming evidence that agitations, tiny fluctuations of the grain positions, associated with large fluctuation of their contact forces, play a central role for slow granular flows. These agitations are generated in flowing regions, but travel deep inside the quiescent zones, and lead to a nonlocal rheology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call