Abstract

Networks of fast nonlinear elements may display slow fluctuations if interactions are strong. We find a transition in the long-term variability of a sparse recurrent network of perfect integrate-and-fire neurons at which the Fano factor switches from zero to infinity and the correlation time is minimized. This corresponds to a bifurcation in a linear map arising from the self-consistency of temporal input and output statistics. More realistic neural dynamics with a leak current and refractory period lead to smoothed transitions and modified critical couplings that can be theoretically predicted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call