Abstract

AbstractThe phosphine double exchange process involving [RhCl(COD)(TPP)] and [Rh(acac)(CO)(TMOPP)] (TPP = PPh3, TMOPP = P(C6H4‐4‐OMe)3) to yield [RhCl(COD)(TMOPP)] and [Rh(acac)(CO)(TPP)] is very rapid but is followed by a much slower process where the bidentate ligands are exchanged to yield [Rh(acac)(COD)] and a mixture of [RhCl(CO)(TPP)2], [RhCl(CO)(TMOPP)2], and [RhCl(CO)(TPP)(TMOPP)]. The exchange involving [RhCl(COD)(L)] and [Rh(acac)(CO)(L)] yields [Rh(acac)(COD)] and [RhCl(CO)(L)2], where the reaction is much faster when L = TPP than when L = TMOPP. The mixed‐metal system comprising [IrCl(COD)(TPP)] and [Rh(acac)(CO)(TPP)] yields all four complexes [M(acac)(COD)] and [MCl(CO)(TPP)2], where M = Rh and Ir. This illustrates that both a neutral ligand exchange and an anionic ligand exchange occur. Possible pathways for these processes are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call