Abstract

Europa's ocean lies atop an interior made of metal and silicates. On the basis of gravity data from the Galileo mission, many argued that Europa's interior, like Earth, is differentiated into a metallic core and a mantle composed of anhydrous silicates. Some studies further assumed that Europa differentiated while (or soon after) it accreted, also like Earth. However, Europa probably formed at much colder temperatures, meaning that Europa plausibly ended accretion as a mixture containing water-ice and/or hydrated silicates. Here, we use numerical models to describe the thermal evolution of Europa's interior assuming low initial temperatures (~200 to 300 kelvin). We find that silicate dehydration can produce Europa's current ocean and icy shell. Rocks below the seafloor may remain cool and hydrated today. Europa's metallic core, if it exists, may have formed billions of years after accretion. Ultimately, we expect the chemistry of Europa's ocean to reflect protracted heating of the interior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.