Abstract

AbstractExciton behavior is crucial for improving the optoelectronic property of a light‐emitting conjugated polymer. Herein, the photoexcitation dynamics of exciton migration and energy transfer in a self‐doped β‐conformation film of the polydiarylfluorenes (poly[4‐(octyloxy)‐9,9‐diphenylfluoren‐2,7‐diyl]‐co‐[5‐(octyloxy)‐9,9‐ diphenylfluoren‐2,7‐diyl], PODPF) are demonstrated. Compared to the first generation of the β‐conformation polyfluorene, poly(9,9‐dioctylfluorene) (PFO), energy transfer occurs in PODPF β‐conformation films in a time period of ≈150 ps, much longer than those of the PFO ones (<5 ps), associated with the effective intrachain energy transfer (few hundred picoseconds), rather than interchain Förster energy transfer (a few picoseconds). Similar to PFO, the PODPF β‐conformation also displays well‐resolved vibronic emission peaks at 20 K, attributed to the planar and rigid conformation. Interestingly, a residual 0‐0 band emission of nonplanar conformation chain segments (435 nm, 2.85 eV) at 20 K also further confirms the exciton migration from the amorphous state to the β‐conformation domain in PODPF films. Therefore, the stable dual amplified spontaneous emission (ASE) behavior of the PODPF self‐doped films at 461 nm (2.69 eV) and 483 nm (2.57 eV), originates from the individual amorphous and β‐conformation domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.