Abstract

Many systems in the realm of nanophysics from both the living and the inorganic world display slow relaxation kinetics of energy fluctuations. In this Letter we propose a general explanation for such a phenomenon, based on the effects of interactions with the solvent. Within a simple harmonic model of the system fluctuations, we demonstrate that the inhomogeneity of coupling to the solvent of the bulk and surface atoms suffices to generate a complex spectrum of decay rates. We show for myoglobin and for a metal nanocluster that the result is a complex, nonexponential relaxation dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.