Abstract

A very slow electron is shown to emerge when an intense high-frequency laser pulse is applied to a hydrogen negative ion. This counterintuitive effect cannot be accounted for by multiphoton or tunneling ionization mechanisms. We explore the effect and show that in the high-frequency regime the atomic electron is promoted to the continuum via a nonadiabatic transition caused by slow deformation of the dressed potential that follows a variation of the envelope of the laser pulse. This is a general mechanism, and a slow electron peak should always appear in the photoelectron spectrum when an atom is irradiated by a high-frequency pulse of finite length.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call