Abstract

The ultrasonically-measured contact stiffness of an aluminum bead confined between two slabs diminishes on mechanical conditioning, and then recovers like log(t) after the conditioning ceases. Here that structure is evaluated for its response to transient heating and cooling, with and without accompanying conditioning vibrations. It is found that, under heating or cooling alone, stiffness changes are mostly consistent with temperature dependent material moduli; there is little or no slow dynamics. Hybrid tests in which vibration conditioning is followed by heating or cooling lead to recoveries that begin like log(t) and then become more complex. On subtracting the known response to heating or cooling alone we discern the influence of higher or lower temperatures on slow dynamic recovery from vibrations. It is found that heating accelerates the initial log(t) recovery, but by an amount more than predicted by an Arrhenius model of thermally activated barrier penetrations. Transient cooling has no discernable effect, in contrast to the Arrhenius prediction that it inhibits recovery. [Supported by the DOE, DE-SC0021056].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.