Abstract

Multiarm star polymers are model systems with tunable intermediate colloid to polymerlike character, exhibiting rich phase behavior, internal relaxations, and flow properties. An important puzzle for several years has been the lack of clear experimental proof of crystalline states despite strong theoretical predictions. We present unambiguous evidence via multispeckle dynamic light scattering (MSDLS) and small-angle neutron scattering (SANS) for such crystallization in a solvent of intermediate quality. An unexpected speed up of the short-time star diffusion observed in MSDLS was attributed by SANS to crystallization, via aging, of the multiam star glass. This delayed glass to crystal transition establishes a pathway for star crystallization that might be generic in colloidal glasses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.