Abstract
Slow dynamic nonlinearity describes a poorly understood, creeplike phenomena that occurs in brittle composite materials such as rocks and cement. It is characterized by a drop in stiffness induced by a mechanical conditioning, followed by a log(time) recovery. A consensus theoretical understanding of the behavior has not been developed. Here we introduce an alternative experimental venue with which to inform theory. Unconsolidated glass bead packs are studied rather than rocks or cement because the structure and internal contacts of bead packs are less complex and better understood. Slow dynamics has been observed in such systems previously. However, the measurements to date tend to be irregular. Particular care is used here in the experimental design to overcome the difficulties inherent in bead pack studies. This includes the design of the bead pack support, the use of low-frequency conditioning, and the use of ultrasonic waves as a probe with coda wave interferometry to assess changes. Slow dynamics is observed in our system after three different methods for low-frequency conditioning, one of which has not been reported in the literature previously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.