Abstract

AbstractThe fracture properties of two proprietary composite dental restorative materials and a model composite system were studied to determine the effects of filler concentration, exposure to water, and particle/polymer adhesion on subcritical crack propagation. Particle content ranged from 36 to 60 volume percent. The double torsion (DT) test was used to measure relationships between the stress intensity factor (K1) and the speed of decelerating cracks or the rate of loading in dry and wet materials in air at laboratory conditions. Materials with weak particle/polymer interfaces fractured by continuous crack growth in both dry and wet conditions. In dry and wet materials with strong interfaces, continuous cracking also occurred at the low end of the range of speeds observed (10−7 to 10−3 m/s), but under test conditions of high crack speeds unstable (stick‐slip) crack propagation was found in dry specimens and in wet model composites with 41 percent vol, filler. Water had a corrosive effect lowering K1c for continuous crack propagation. The exponential dependence of K1c on crack velocity, representing the viscoelastic response of the materials, was positively correlated to the filler concentration and the plasticizing effect of water. Observations on fracture surfaces indicate that low velocity cracks (<10−5 m/s) propagate through regions of high stress concentrations (interfaces, corners, pores) while at higher crack velocities failure occurs by a combination of interparticle and transparticle fracture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.