Abstract
Strength and mechanical behavior of rocks and minerals are modified by aqueous environments. This results in two effects: mechanical and chemical. The chemical effect is investigated from both a theoretical and an experimental point of view. It is shown that a thermodynamic approach leads to a satisfactory understanding of the chemical effect through an ‘extended griffith concept’. Predictions of the model have been tested using slow crack growth experiments. The experiments have been performed with a special Double Torsion apparatus which was built for this purpose. The good agreement observed between theory and experiments suggests that subcritical crack growth in rocks is controlled by adsorption onto the crack tip. This result was previously suggested by other authors (Dunning et al., 1984). However, the important consequences of the model are that (1) there should exist a threshold stress below which subcritical crack growth stops, and this threshold depends on the environment; (2) subcritical crack growth and time-dependent phenomena could take place in the crust in a stress interval which could be as high as 50% of the rupture stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.