Abstract

A Zr4+-containing sodium borosilicate glass (ZNBS) and a zirconium-free reference glass (NBS) were prepared by melt quenching. Thermal analysis revealed two glass transitions, indicating that both glasses exhibit phase separation into boron- and silica-rich domain structures already after quenching to room temperature. Electron micrographs showed that annealing of NBS and ZNBS glasses initiated the coarsening of these domains and the precipitation of metastable t-ZrO2 in the boron-rich matrix of the ZNBS glass. The coarsening kinetics of the silica-rich domains followed the theoretical predictions (power law exponent = 1/3), while the coarsening of the t-ZrO2 crystallites was much slower. The time evolution of the average size of t-ZrO2 nanocrystallites from small angle X-ray scattering (SAXS) and high-temperature X-ray diffraction (HTXRD) experiments revealed a coarsening exponent of ∼1/6. This slow coarsening of t-ZrO2 is assumed to be confined by the domain structure of the primary phase separation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call