Abstract

Slow neuron regression develops during the adult phase of life in select brain systems of mammals. We describe a model in adult rats that resolves several phases in a slow atrophic process that differentially influences levels of mRNA and protein for tyrosine hydroxylase (TH). Responses of striatal dopaminergic markers to 6-hydroxydopamine (6-OHDA) lesions in rats indicated that the striatal terminals maintained TH protein, despite >3-fold loss of TH mRNA in the substantia nigra pars compacta (SNC) cell bodies whose axons project to the striatum. The loss of TH mRNA/cell was progressive up to 9 months, whereas SNC cell body shrinkage stabilized by 3 months post-lesioning. Consideration of possible mechanisms in protein turnover motivated a search for PEST motifs in the TH of rats and other vertebrates that could be a point of regulation by altering the rate of TH protein turnover.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call