Abstract

The oriens-lacunosum moleculare (O-LM) subtype of interneuron is a key component in the formation of the theta rhythm (8-12 Hz) in the hippocampus. It is known that the CA1 region of the hippocampus can produce theta rhythms in vitro with all ionotropic excitation blocked, but the mechanisms by which this rhythmicity happens were previously unknown. Here we present a model suggesting that individual O-LM cells, by themselves, are capable of producing a single-cell theta-frequency firing, but coupled O-LM cells are not capable of producing a coherent population theta. By including in the model fast-spiking (FS) interneurons, which give rise to IPSPs that decay faster than those of the O-LM cells, coherent theta rhythms are produced. The inhibition to O-LM cells from the FS cells synchronizes the O-LM cells, but only when the FS cells themselves fire at a theta frequency. Reciprocal connections from the O-LM cells to the FS cells serve to parse the FS cell firing into theta bursts, which can then synchronize the O-LM cells. A component of the model O-LM cell critical to the synchronization mechanism is the hyperpolarization-activated h-current. The model can robustly reproduce relative phases of theta frequency activity in O-LM and FS cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.