Abstract

Advanced manufacturing industries need materials with high strength and low weight in the fields of advanced engineering, such as automobiles and aeronautics. Metal matrix composites (MMCs) are one of the advanced engineering materials that meet the above requirements. To enhance the properties of MMCs, researchers added an additional phase of reinforcements into single reinforced MMCs; such developed MMCs are known as hybrid MMCs. The additional phase of reinforcements enhances the properties of MMCs, but simultaneously leads to rapid tool wear and poor machinability. This study developed an innovative hybrid machining process (HMP) consisting of electrical discharge grinding and diamond grinding in such a way that both the processes occur alternately with equal intervals due to the rotation of a slotted abrasive grinding wheel. The performance of the hybrid process was tested on an Al/SiCp/B4Cp work-piece in cut-off grinding mode. The experiments were conducted on an electrical discharge machining machine, which consists of a separate attachment on a vertical column to rotate the wheel. Pulse current, pulse on-time, pulse off-time, wheel RPM, and abrasive grit number were taken as input parameters while material removal rate (MRR) and average surface roughness were taken as output parameters. Result were shown that the HMP gives higher MRR with better surface finish as compared to the constituent processes. Pulse current ranging from 3 A to 21 A, pulse on-time ranging from 30 μs to 200 μs, and pulse off-time ranging from 15 μs to 90 μs were also found to be more suitable for higher MRR, and a wheel RPM at 1300 RPM was more suitable for higher MRR with better surface finish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call